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Since the exact time a specific nucleus undergoes radioactive decay cannot be specified, nor
can showers caused by secondary cosmic rays be predicted, statistical laws play an important
role in almost all cases of experimental nuclear physics. This paper describes the method for
the statistical treatment of nuclear counting results obtained experimentally by taking into ac-
count random variables pertaining to both frequent and infrequent phenomena. When pro-
cessing counting measurement data, it is recommended to first discard spurious random vari-
ables that spoil the statistics by using Chauvenet’s criterion, as well as to test if the results in
the statistical sample follow a unique statistical distribution by using the Wilcoxon rank-sum
test (U-test). The verification of the suggested statistical method was performed on counting
statistics obtained both from the radioactive source Cs-137 and background radiation, ex-
pected to follow the normal distribution and the Poisson distribution, respectively. Results
show that the application of the proposed statistical method excludes random fluctuations of
the radioactive source or of the background radiation from the total statistical sample, as well
as possible inadequacies in the experimental set-up and show an extremely effective agree-
ment of the theoretical distribution of random variables with the corresponding experimen-
tally obtained random variables.
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INTRODUCTION

By observing natural radioactivity, it was con-
cluded that it consists in a delayed spontaneous trans-
formation of the nucleus accompanied by the emission
of radiation (particles and/or photons). The exact time
when a specific nucleus will transform, i. e., undergo
radioactive decay, cannot be specified. It is, however,
independent of the previous history of the nucleus,
i. e., there is no memory effect. The half-life of a nu-
cleus s, therefore, introduced as a characteristic of this
phenomenon, defined as the mean decay time around
which the decay times of a large number of the same
type of nuclei fluctuate [1, 2]. Radioactive decay itself
is a consequence of the fact that the initial nucleus is
more energetically unstable than the resulting one.

For this reason, in almost all cases of experimen-
tal nuclear physics, statistical laws play an important
role. This is most pronounced in the processing of
measurement results obtained from counters, i. e.,
when the results of nuclear counting are treated. It is

* Corresponding author; e-mail: rektorat@np.ac.rs

usually assumed that nuclear counting results follow
either the normal distribution, in case the statistical
sample consists of random variables pertaining to a
phenomenon that occurs many times during a unit of
time, or the Poisson distribution, in case the statistical
sample contains random variables referring to an in-
frequent phenomenon.

However, this kind of statistical treatment is
oversimplified, since itignores fluctuations of the con-
sidered nuclear phenomena. These fluctuations are
present even in the case when the statistical sample
consists of random variables describing a frequently
occurring phenomenon, e. g., during spectroscopic
measurements with radioactive sources, but are of
greater importance when the statistical sample con-
tains random variables referring to an infrequent phe-
nomenon, e. g., in the case of background radiation
measurements, when sudden showers of counter im-
pulses caused by secondary cosmic rays may appear.
Furthermore, the described oversimplified treatment
is inadequate when there is a possibility that the statis-
tical distribution of nuclear counting results is of a
complex type, either additive or multiplicative.
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It is therefore advisable, when counting results
are processed, to first discard spurious random vari-
ables that spoil the statistics, as well as to test if the re-
sults in the statistical sample follow a unique statistical
distribution. The aim of this paper is to propose such
additional methods for treating nuclear counting re-
sults.

CHAUVENET’S CRITERION AND
WILCOXON RANK-SUM TEST (U-TEST)

The Chauvenet’s criterion, formulated a long
time ago as a means for rejecting erroneous readings of
star locations with a sextant, can be used to discard the
majority of spurious random variables arising in an ex-
perimental procedure. The Wilcoxon rank-sum test
(i. e., the U-test) is an algorithm for establishing
whether all statistical samples, obtained by dividing a
larger sample, follow a unique statistical distribution.
By applying these two methods, it is possible to reject
either specific random variables, or subgroups of ran-
dom variables that spoil the quality of the statistical
treatment and the reliability of the obtained results [3,
4].

Chauvenet’s criterion

The problem of determining the value of a physi-
cal quantity from the repeated measurements of pa-
rameters performed as a part of an experiment is linked
to the general analysis of the realization of experi-
ments or measurements, i. e., to the statistical analysis
of the obtained results. The set of all results obtained
during one or several measurement series is taken for a
population, while certain subgroups of results from
one or several measurement series form the samples

XXy peuesX X} ,...,X —population

oo
X15Xg 5euesX;sen., X, —a sample (n<N) 1

X5 Xjgq 5eeesX joeee, X — @ sample (K +1<N)

After the general analyses of the experiment it-
self, the first task is to calculate the mean value of the
measurand over the whole population and over the
samples (x,, x,), as well as the mean-square deviation
over these same groups of results (o, o). It is also
useful to calculate the mean-square deviation of the
mean values for all investigated quantities (o, 0y)
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Inrecent literature, the mean-square deviation of
the measured quantities (o, o) is termed standard un-
certainty of individual measurements, while the mean
square deviation of means (o, oy) is termed type A
standard uncertainty [4].

The spectrum of measurement results

Analysis of the results obtained by performing
measurements on the population and on different sam-
ples from that population, after mean values and mean
square deviations have been calculated, consisted in
sorting the sets of measurement results to which these
calculations pertain. All the results constituting the
population and the samples are sorted in an ascending
and descending order. The sorted sets of values then
clearly show the positions of the calculated mean val-
ues, as well as the coverage of measurement results by
the respective mean square deviations

Xpin SXj SX, =05 S..SX; Sxp <.
LSy SX, 0, S SX

max (5)
Xppin SXj SXg =0 S, SX Sxg <.
Sy Sxg+ 0 S SX

It can easily be detected how large the deviations
of the limiting values of a set are relative to the mean
value of the specific sorted set of results. Preliminary
assessments on whether the limiting values should be
treated separately can then be made. In most analyses,
special attention is paid to treating the minimum and
the maximum measured value, primarily regarding
probabilities for their appearance [5-7].

Defining the limiting probabilities

The four basic calculated quantities (mean
value, mean square deviation, maximum value, and
minimum value) enable the determination of an inter-
val that encompasses all measurement results, or just
one part of the results relative to the population or the
sample. An interval containing the results is expressed
as amultiple of the mean square deviation (—ko, +ko),
or indirectly, by using parameters of a Gaussian distri-
bution.

In general, all results are possible, meaning that
the interval (—ko, +Ko) is infinite. However, during
result analysis, a limiting value that is deemed to en-
compass values arising from fluctuations inherent in
the measurement process is often set, while results
outside that interval demand special consideration.
The determination of this limiting value, or of the lim-
iting interval width, is accomplished on the basis of an
assumed or derived probability for a specific result to
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appear as expected, moderately expected, or unex-
pected.

The said conclusion, that the probability of a re-
sult being either expected or unexpected gives rise to a
numerical calculation of interval limits, makes the ba-
sis for our starting assumption.

The starting assumption is that event £, which is
considered rare, has to occur within z# executions of the
experiment, i. e., measurements. The probability for
event E to occur in # trials, with z being a large num-
ber, is 1/n, while the probability for event £ not to oc-
cur is 1 — 1/n. The probability for event £ not to occur
in n trials is (1 — 1/n)". The probability for event E to
occur at least once in # trials is

P{E occurs once or several times} = 1—(1—1j (0)

n
Since, hm(l 1/n)" —hm[(l 1/n)y "1 " =e

it follows that P(E)=1- (1 1/n)"=1- l/e 0.632.

It is evident that for n executions of an experi-
ment, with n being a large number, an unexpected
eventhas a pretty high probability of occurring [8, 9].

The criterion for determining limiting
probabilities (Chauvenet s criterion)

We will suppose that » measurements have been
performed, with n being a large number, and that a
low-probability result has appeared. As a result of ran-
dom fluctuations during measurements, it can be ex-
pected that the probability for any of the » different re-
sults to appear is not much lower than 1/n. If nis alarge
number, 1/n is also the small probability for an unex-
pected or rare event E to occur. Let the minimum prob-
ability for the unexpected event E (i. e. the unexpected
measurement result) to occur be defined as one half of
the probability for one of » different results to appear,
with n being large (1/2n). From this assumption, it fol-
lows that the probability for the unexpected event not
to occur is

2n @

and if, additionally, the distribution that describes the
measurement process is Gaussian, the following rela-
tion ensues

P(t)=

P=1

1 +t 25 1
E J.e_r dt:l_?n (8)
—t

From relation (8), it can thus be concluded that
the value of parameter ¢ is

- o102 1 -1,
t=F [FI dr=1- 2n] F'(n) (9)

Since parameter ¢ is defined as ¢ = (x, — x;)/o, it
follows that
e.:

imax (10>
(o)
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which is the analytical form of the Chauvenet’s crite-
rion. Itis evident that e; ,,,x = g Oy, I. €. €;max =t O Let it
be noticed that if the probability for a rare event is as-
sumed to be 1/2n, where n is a large number, then the
probability for event £ to occur at least once in # trials

is Ly
P(E)zl—(l—znj =

-1/2

—2n
—1- (1—1) —1-¢2 20393 (11)
2n

meaning that an “unexpected event” is not too improb-
able, i. e. that measurement results lying outside the in-
terval g, == F ' (n) are considered “rare” and submit-
ted to special analysis within their respective
population or sample.

The operating procedure for
implementing Chauvenet s criterion

The operating procedure for implementing the
Chauvenet’s criterion consists of several steps. It is
first checked if the population distribution is Gaussian
or is assumed to be Gaussian, if this is obvious. The
group parameter ¢, (Chauvenet’s parameter) is then

determined as
=F'(n)=

=F" {rj et = 21’1}=t (12)

Thetable containing Chauvenet’s parameters for
a number of different measurements » is provided in
ref. [10]. In the next step, for the set of results x;, x,, ...,
x, the mean and the standard deviation are determined
as

2
x=E=L . (13)
n
Next, parameters g; are determined as
‘xs —xl‘ Xy —Xi ‘xs —xn‘
127,..., izi,..., n —
GS GS GS
(14)

In the end, the set of Chauvenet’s parameters is
sorted and compared to the group parameter g,. If any
of the parameters ¢, is larger than ¢, that parameter, or
the result corresponding to it, is separated from the
population or sample (i. e. is eliminated or treated
separately), and the procedure repeated.

Wilcoxon rank-sum test

One of the most important problems of mathe-
matical statistics is the testing of the hypothesis about
the equality of two distributions based on two samples
taken from them, or the problem of testing the hypoth-
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esis on two independent samples belonging to the
same basic set. If the data is available at least in the
form of ranks, one of the strongest and most simple
non-parametric tests used is the rank-sum test. The
testing procedure was proposed by Frank Wilcoxon in
1945, while an equivalent test was independently for-
mulated by H. Mann and D. Whitney in 1947. In his
test, Wilcoxon considered the rank function W, while
Mann and Whitney considered a rank function U that
is linearly related to W. After the rank function U pro-
posed by Mann, and Whitney, their test is often re-
ferred to as the Mann-Whitney U-test. Seeing that the
Wilcoxon and the Mann-Whitney test are equivalent,
the rank-sum test is also called the Mann-Whit-
ney-Wilcoxon test.

The rank-sum test is sensitive to any difference
between locations, dispersions, or shapes of two sets’
distributions. The only assumption that this test re-
quires is the continuity of the basic set’s distribution,
so that the appearance of identical observations may
be avoided. The test requires only that both distribu-
tions have identical shapes, but these can come in the
form of any two symmetrical or asymmetrical distri-
butions.

Take, for example, the two following sets: set A
with n; elements and set B with n, elements:

Set A: xy, Xp,ees X,y

Set B: v, Vayees Vi

Let M, denote the median of set A, and M, the
median of set B (median is the value of a parameter po-
sitioned in the middle of a series sorted according to
the size of the parameter, i. e. the value of the parame-
ter dividing the sum of all frequencies in two equal
parts so that one half of included cases have lower val-
ues and the other half higher values than the median).
The null hypothesis, H,, can be formulated as “no dif-
ference between these two sets”, meaning that the two
independent random samples belong to identical basic
sets. It can be seen from fig. 1 that, if the null hypothe-
sis is true, the two distributions coincide completely.
If, on the other hand, the alternative hypothesis H;is
true (M, < M,), set B has a greater median and is
shifted to the right of set A by A.

The testing procedure is rather simple, founded
on the ranking of joint observations from both sam-
ples, whereby it is important to keep track of the affili-
ation of values to respective samples. The elements of

Identical distributions
of both populations

\

Hy Shift A

H,

Figure 1. Graphic illustration of the null and the alterna-
tive hypotheses

both sets are sorted according to size, so that rank 1 is
assigned to the smallest of n -7, + n, combined obser-
vations, rank 2 to the next larger observation, efc.,
while rank 7 is assigned to the largest datum. If there
are data with equal values, their mean rank is found
(e. g. if the sixth and the seventh element have equal
values, both are assigned rank (6 + 7)/2 = 6.5). Test
statistics is obtained as the sum of ranks in a sample, in
the manner described next. Let the arrays of data in the
samples, sorted according to size, be presented in the
same graph by different symbols (e. g. a dot and a
square), denoting the affiliation to respective samples

(fig. 2).

N
Lo
o>

[N | KN KN KN |
Ranks 123 4567 8910

(a) In support of H,

(L L KR ] RN
1234567 8910

(b) In support of H; (M; < M)

Figure 2. Distribution of observations from both samples
and their combined ranks

If the null hypothesis that both samples originate
from the same basic set is true, then the joint observa-
tions from the samples (as well as their ranks) will be
completely mixed, as in fig. 2(a). If, however, observa-
tions with higher values (and higher ranks) appear
much more often in the B set sample, as in fig. 2(b), it
can be concluded that population B is shifted to the
right with respect to population A, i. e. that it has a
larger median. Since higher ranks appear mostly in the
B set sample, their sum can be taken for the test statis-
tics because it, too, will be much higher than the rank
sum of the population of the A sample. This would,
therefore, indicate that the null hypothesis about the
equality of the two samples’ medians should be re-
jected, i. e. these two samples could not have belonged
to the same basic set [10].

The testing procedure

Let us consider again sets A and B with n; and n,
elements, respectively. In order to make the use of crit-
ical value tables more convenient, we will introduce a
convention that if the two samples differ in size, n; rep-
resents the number of elements in the smaller sample
(set A), while n, is the number of elements in the larger
sample (set B). The statistics of the rank-sum test W, is
equal to the sum of ranks in the smaller sample. If the
samples have an equal number of elements, any of
them can be chosen for the calculation of the test statis-
tics. Similarly, Wy is obtained as the sum of ranks of
the elements that belong to the larger sample (set B).
Seeing that the sum of n successive natural numbers is
n(n + 1)/2, the sum of the test statistics W, with the
rank sum Wy from the sample with 7, elements must
be equal to the following value
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W, + Wy = ”(”; D (15)

where n=n, + n,. Equation (15) can be used for check-
ing if the ranking procedure has been correctly per-
formed.

When each of the samples has less than 10 ele-
ments (n; and n, < 10), then the determination of sig-
nificance levels can be found in [10], i. e. the lower and
the upper critical value of /. In two-way tests (when
M, =M, istested), if the calculated value of the test sta-
tistics W, is lower than, or equal to the lower critical
value, or if it is higher than, or equal to the upper criti-
cal value, M,, and M, differ, i. e. these two samples do
not belong to the same basic set, with a predefined sig-
nificance level .

In a one-way test (when M, < M, is tested) the
critical region lies to the left, so Hy, is rejected if the ob-
tained value of W, is lower than or equal to the lower
significance level. A rank sum in the first sample that is
too small indicates that the sample originates from a set
with a lower median value. Inversly, when a one-way
test with the alternative H,: M, > M, is used, the critical
region lies to the right, and the null hypothesis is re-
jected if the realized value of the test statistics W, is
larger than or equal to the upper significance level.

Wilcoxon rank-sum test for
large samples

The W, test statistics for large samples has an ap-
proximately normal distribution, with the arithmetic
mean of n;(n + 1)/2 and variance of npn,(n + 1)/12.
Hence, for sample sizes of n, and n, > 10, the null hy-
pothesis is tested by an approximate test statistics Z,
calculated as

W, _n(n+1)
Iz 2 (16)
nn,(n+1)
12

Bounds (—z, +z) that need to contain the approxi-
mate test statistics Z are then determined. The value of
the standard normal (Gaussian) distribution in z is first
determined from

P(—z<Z<z)=2F(z)-1 (17)

where P(—z <Z<z) is the probability of Z being within
the range (—z, +z), while F(z) is the value of the distri-
bution function in z. Using tabulated values of F(z) for
the standard normal distribution, the upper bound z is
determined, and then, symmetrically, also the lower
bound —z.

In a two-way test (when M| =M, is tested), if the
calculated value of the approximate test statistics Z is
lower than or equal to the lower bound —z, or if it is
larger than or equal to the upper bound z, M| and M,
differ, i. e. these two samples don’t belong to the same
basic set with a significance level a determined from

P(-z<Z<z)=1-a (18)

In a one-way test (when M| < M, is tetsted) the
critical range lies to the left, so the samples don’t be-
long to the same basic set if the obtained value of Z is
less than or equal to the lower bound —z. Inversely,
when a one-way test with the alternative H,: M, > M,
is used, the critical region lies to the right, and the sam-
ples do not belong to the same basic set if the realized
value of the approximate test statistics Z is larger than
or equal to the upper bound z.

VERIFICATION OF THE
APPLICABILITY OF THE STATISTICAL
METHODS TO NUCLEAR COUNTING
RESULTS

In order to verify the efficiency of the previously
described statistical methods concerning nuclear
counting, a statistical analysis of background radiation
was performed, expected to follow the Poisson distri-
bution, as well as the analysis of nuclear counting of
137Cs radioactive decay, expected to follow the normal
distribution. The “number of pulses” random variable
was determined from the readings of a Geiger-Miiller
counter with no anticoincidence protection. Back-
ground measurements were performed in 10 s inter-
vals, providing a total of 1000 values for the “number
of pulses” random variable.

The statistical sample obtained is, thus, pre-
sented in the form of an experimental probability den-
sity function (PDF), obtained by normalizing the his-
togram of measured values, along with the PDF of the
corresponding theoretical distribution with parame-
ters determined from the measurement results.
Assuming that the hypothesis on the sample’s distribu-
tion is true, these two curves should coincide [10-12].

The sample of the “number of pulses” random
variable was treated both with and without the applica-
tion of Chauvenet’s criterion and of the U-test. The
U-test was applied by dividing 1000 statistical samples
into 20 consecutive sub-samples with 50 values of the
random variable each, which were then tested to deter-
mine if they belong to the same random variable as the
first sample. Statistical sub-samples that did not pass the
test (at the 5% significance level) were rejected.

The obtained results are shown in figs. 3 and 4.

Assuming a chosen theoretical distribution is ad-
equate for the investigated random variable, the nor-
malized and the theoretical curves should coincide. As
figs. 3 and 4 clearly demonstrate, the coincidence is
much better when the proposed procedure of rejecting
spurious results is applied to the samples. This proves
the point that the application of the proposed addi-
tional statistical methods excludes random fluctua-
tions of the radioactive source or those of the back-
ground radiation from the total statistical sample, as
well as possible inadequacies in the experimental
setup.
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Figure 3. Poisson distribution of the statistical sample of
background radiation obtained experimentally (- --) and
the corresponding theoretical distribution (-)

(a) without the suggested algorithm and (b) with the sug-
gested algorithm

*Cpm — counts per minute

CONCLUSIONS

In this paper, a method of purifying the results of
nuclear counting is proposed. The proposed methods
of applying Chauvenet’s criterion and the U-test en-
able us to obtain a statistical sample of nuclear count-
ing without suspicious single results or without suspi-
cious groups of consecutive results, as it often happens
in practice. For, in practice, in nuclear radiation detec-
tion, it often happens that inside a single interval of
measurement significant fluctuations appear because
of a significant shower of secondary cosmic rays or,
due to greater fluctuations in the value of the counter’s

-
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o o
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Number of pulses [cpm]
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© o
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000000
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Figure 4. Normal distribution of the statistical sample of
random variable number of pulses (from Cs-137)
obtained experimentally (---) and the corresponding the-
oretical distribution (-)

(a) without the suggested algorithm and (b) with the sug-
gested algorithm

dead time. In practice, the fluctuation inside one group
of consecutive counting results appears due to a cer-
tain systematic error of the experiment in which, overa
longer detection period, some other source of radiation
is superimposed to measured data. These two effects
corrupt the statistical regularity of the detection and
the statistical sample. The proposed methods for the
treatment of statistical samples have proven to be ex-
tremely effective and have yielded a high agreement
between the theoretical distribution of random vari-
ables and the corresponding experimentally obtained
random variable.
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heman b. JOJITKhAHUH, Kosnska ' b. CTAHKOBUH,
Huana h. JOJINMHhAHHUH, bopuc b. JOHYAP

CTATUCTNYKA OBPAJA PE3YITATA HYKIEAPHOI' BPOJAIBA

ITomro TauaH TpeHyTaK Kajia je3rpo MOjJIeXe pagHoOaKTHBHOM pachajy He MoXe OWTH
oapeben, kao HU npefiBubame NbYCKOBA CEKYHAAPHOT KOCMUUKOT 3padyekha, CTaTUCTHUKH 3aKOHH UTPajy
BaxkKHY YJIOT'Y Y CKOPO CBHUM Clly4yajeBUMa €KCIIEPUMEHTANIHE HyKjleapHe (hu3uKe. Y OBOM pajly OIIMCaH je
METOJI CTATUCTHYKE 00pajie pe3yiiTaTa HyKiieapHOT Opojama JoOMjeHNX eKCIepUMEHTATHO, y3uMajyhu y
0031p cirydajHe MIPOMEHIBIBE KOje Ce OfJHOCE 1 Ha YecTe U Ha peTke 1ojase. [1pn o6pajgn MepHUX mofjaTaka
IPENOPYWHUBO je HajIpe Of0AlUTH CYMIbUBE CIy4ajHE IPOMEHIbUBE KOje KBape CTaTUCTHUKY IIPUMEHOM
IlloBeHeOBOT KpUTEPHjyMa Ka0 U TECTUPATH /1A JIU PE3YIATATH Y CTATUCTUIKOM Y30PKY IIpaTe jeAMHCTBEHY
CTaTHUCTHYKY PACIOfeNy NPHMEHOM BWIKOKCOHOBOI TecTa cyMme panrosa (Y-rtecra). IIposepa
MIPE/ITIOSKEHOT CTATHCTHYKOr METOja W3BE/IeHa je Ha CTaTHCTHIM JOOMjeHO] U3 pajiMOaKTUBHOT M3BOpa
Cs-137 u mo3agMHCKOr 3padema, 3a Koje ce OoueKyje fa mpare HopMaiaHy u IloacoHOBy pacnopeny,
pecnekTuBHO. Pe3ynraTu ¢y mokasanu fja ce MPIMEHOM MPEIIOSKEHOT CTATUCTHYKOT METO/Ia UCKIBYUY)Y
ciydajHe (hIyKTyanuje u3 pafioakTHBHOT N3BOPA WY MO3A[UHCKOT 3padeha U3 eJOKYITHOT CATHCTHYKOT
y30pKa, Kao 1 Moryhe HeaJeKBaTHOCTH €KCIIEPIMEHTAIIHE IOCTaBKe W MOTBPAWIN N3Y3€THO e(PUKACHO
cllarale TEOPETCKUX paclofiesia CIydyajHUX IPOMEHJBUBHUX ca OAroBapajyhuMm excrnepuMeHTanIHO
RoOujeHNM pacrojenama clly4ajHuUX IPOMEHIbUBUX.

Kmwyune peuu: ciuaiuuciuuxa o6pojarsa, llloserneos kpuitiepujym, Y-itiecit



